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SUMMARY

Covolume methods constitute a generalization to unstructured meshes of classical staggered mesh
techniques. In this paper, a fourth-order method is proposed and it is proved rigorously that the order
is indeed 4 in a standard norm. This result is for structured meshes only, and for div–curl equations in
two-dimensional space. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this report, a higher-order covolume scheme for planar div–curl problems is constructed.
Error estimates and a numerical example are given to show that the convergence rate of the
covolume scheme is fourth-order in h, the uniform mesh size.

Div–curl systems appear in fluid dynamics [1,2], in electromagnetics [3,4] and many other
applications. The first-order systems are often solved using indirect methods including poten-
tial formulations or Biot–Savart-type integrals [5] and least-squares [6]. Since potential
formulations can have spurious mode problems [7] and the Biot–Savart approach needs
special handling of boundaries a different treatment may be desirable. A direct discretization
of planar div–curl problems was proposed by Nicolaides [8]. The scheme used a Delaunay–
Voronoi mesh system to discretize the div equation in the primal cells and the curl equation
in the dual cells. It was shown that the convergence rate of this complementary volume, or
co6olume for short, method is first-order for general unstructured meshes and second-order for
a class of smoothly varying meshes.

Let V denote a rectangular domain in R2 with boundary G and unit outward normal n. If
u= (u, 6) denotes a vector field in R2, a div–curl system is

div u= f in V, (1.1)

curl u=g in V, (1.2)

u ·n= l on G, (1.3)

where f and g are scalar functions defined in V, and l is a given function defined on G. It is
assumed that
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G

l ds=
&

V
f dx. (1.4)

It is known that if f, g�L2(V) and l�H1/2(G), the system (1.1)–(1.3) has a unique solution
u� (H1(V))2 (see [9]).

2. MESH NOTATIONS AND COVOLUME METHODS

Consider a uniform grid with the grid size h on V and take this uniform grid as the primal
mesh. A dual mesh is formed by connecting the centers of adjacent square cells and consists
of staggered square cells. It follows that the primal edges are orthogonal to the corresponding
dual edges. This reciprocal orthogonality is very important in the construction and analysis of
covolume schemes in general. It also appears in the unstructured Delaunay–Voronoi construc-
tion [8,10].

The T nodes of the dual mesh cells are assumed to be numbered sequentially, and likewise
the E edges with E % interior edges and the N interior nodes of the primal mesh. The individual
primal cells and edges are denoted by ti and sj respectively. Those of the dual mesh are
denoted by primed quantities such as s %j. A direction is assigned to each primal edge by the rule
that the positive direction is from low to high node number. The dual edges are directed by the
corresponding rule.

To begin, the div equation (1.1) is integrated over a primal mesh square t1 and the curl
equation (1.2) over a dual mesh square t %1 using the appropriate Green’s theorem in each case,
see Figure 1. Hence

%
si�(t%

&
si

u ·n ds=
&

t

f dx, (2.1)

%
s %i �(t%

&
s %i

u ·t ds=
&

t%

g dx, (2.2)

where t denotes the unit tangent vector along the co-edge s %i and n is the unit normal vector
of the primal edge si.

First, let us introduce a low-order covolume scheme and its properties.
In a low-order scheme, the mid-point rule is used to approximate the line integral along the

mesh edges. Referring to Figure 1, (2.1) is approximated by

Figure 1. Mesh indicating t1 and t %1 primal mesh squares.
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Figure 2. Close up of the primal mesh square t1, indicating all parameters.

h(u1+u2+u3+u4)=
&

t 1

f dx. (2.3)

Here and below, uj denotes an approximation to u ·nj, and nj denote unit normals of sj. There
will be a similar equation for each one of the T primal mesh squares in the grid. In matrix
form, with u denoting the vector of components uj, these flux equations can be written as

F1u= r̄, (2.4)

where u�RE and r̄�RT.
Similarly, (2.2) is approximated by

h(u7+u10+u11+u12)=
&

t %1

g dx. (2.5)

Assembling these N circulation equations gives the matrix equations

C1u=v̄, (2.6)

where u�RE and v̄�RN.
The boundary condition (1.3) is discretized by (see Figure 2)

u3=
1
h
&

s 3

l ds. (2.7)

There are N1 of these boundary equations where N1 denotes the number of boundary edges,
which is also the number of boundary nodes. Thus (2.3), (2.5) and (2.7) form a linear system
of T+N+N1 equations in E unknowns. According to the classical Euler formula

T+N+N1=E+1, (2.8)

and there is one more equation than unknowns. This turns out to be consistent with Equation
(1.4) [8].

Denote the inner product space consisting of RE equipped with [ . , . ] by U, where

[u, 6 ]� %
E

i=1

h2ui6i (2.9)

and


u
2� [u, u ].
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Then we can refer to ‘grid functions’ u�U(V( ) and regard them as having boundary values u �G
and interior values u �V. Define

U0�{u�U ; u �G=0}.

The following theorem is important in the analysis of the covolume scheme and is proved in
[8].

Theorem 2.1
If u, 6�U0 and

F1u=0, C16=0,

then

[u, 6 ]=0. 
 (2.10)

From this theorem, the linear system (2.4), (2.6) and (2.7) can be proved to have a unique
solution. Theorem 2.1 is a discrete analog of the following formula in vector calculus:&

V
u ·v dx=0,

if u, v�H0(div; V)SH(curl; V) and div u=0, curl u=0.
An error estimate for this scheme is proved in [8] and the convergence is second-order for

the uniform grid.

3. A HIGHER-ORDER SCHEME

The higher-order covolume scheme uses the following quadrature rule to discretize the line
integrals in (2.1) and (2.2):

1
h
& h/2

−h/2

f(x) dx:
1

24
( f(−h)+22f(0)+ f(h)). (3.1)

This rule uses data from outside of the integration interval in addition to the mid-point value.
It is exact for cubic polynomials and its error is O(h4), instead of O(h2) for the mid-point rule
in the low-order scheme. This is used to discretize each line integral in (21) and (2.2). For
example, for the interior primal edge s1, both of whose endpoints are inside V, (1/h)	s 1

u ·n ds
is approximated by (see Figure 1)

Is 1
u�

1
24

(u5+22u1+u6), (3.2)

where ui denotes an approximation to u ·ni. Also, for the integrals along the co-edges the same
rule is applied. For example, for the co-edge s %2 (1/h)	s %2

u ·n ds is approximated by (see Figure
1)

Is %2
u�

1
24

(u8+22u7+u9). (3.3)

Implementing the boundary conditions for higher-order schemes must be done carefully if
the full high order of accuracy is to be obtained. It is apparent that the circulation around the
dual mesh squares can be computed without additional effort. However, to compute the flux
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out of the boundary mesh squares, for example, t1 in Figure 2, requires data not in our
possession. One reasonable solution is to use the boundary derivatives to design a suitable
quadrature rule. For example, to compute 	s 4

u ·n ds in Figure 2, a point a half-cell below the
boundary point D is introduced and (3.1) is used

1
h
&

s 4

u ·n ds=
1

24
(22u ·n4+u ·n5+u ·n6)+O(h4). (3.4)

To compute u ·n6, the following expansion is used:

u ·n4−u ·n6

h
=Dy(u ·t)(D)+

h2

24
Dyyy(u ·t)(D)+O(h4), (3.5)

where Dy and Dyyy denote partial derivatives. So

1
h
&

s 4

u ·n ds=
1

24
(23u ·n4+u ·n5)−

h
24

Dy(u ·t)(D)−
h3

242 Dyyy(u ·t)(D)+O(h4). (3.6)

Using the curl equation (1.2) one obtains

Dy(u ·t)(D)=Dx(u ·n)−g(D)=Dxl(D)−g(D).

To approximate Dyyy(u ·t)(D), u is eliminated from the div–curl system ux+6y= f, 6x−uy=g,
to obtain 6xx+6yy=gx+ fy, so that

Dyyy(u ·t)(D)=uyyy(D)=6xxx(D)−gyyy(D)=gxx(D)+ fxy(D)−gyy(D)− lxxx(D).

These derivatives of the boundary data are then approximated by standard finite difference
schemes. For example

gyy(D)=
4
h2 (g(D)−2g(A %)+g(A))+O(h),

where A % is the mid-point of the primal edge s4 (see Figure 2) and the approximation is exact
if g is a quadratic polynomial.

Denote the finite difference approximations to the derivatives of the boundary data by L0 .
After putting L0 into (3.6) a quadrature rule that is exact for cubic polynomials is obtained.
Then

Is 4
u�

1
24

(23u4+u5)−
h

24
(lx(D)−g(D))+L0 (3.7)

is used to discretize (1/h)	s 4
u ·n ds and the global accuracy is O(h4).

Putting the flux equations (3.2) and (3.7) together gives

Fu=r (3.8)

where u�RE denotes the vector whose ith component is ui, the approximation to u ·ni, and
r�RT.

Similarly, assembling all the circulation equations (3.3), we have

Cu=v

where v�RN and N is the number of the interior nodes in the grid. As in the lower-order
scheme in Section 2, (3.8), (3.9) and the boundary condition (2.7) form a system of linear
equations. There is one more equation than there are unknowns.
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Theorem 3.1
The linear system (3.8) and (3.9) has a unique solution.

Proof
There is need only to prove that the homogeneous equations Fu=0, Cu=0, with u�U0, have
a unique solution of 0.

Let Isu�RE denote the vector whose ith component is Isi
u, the higher-order quadrature

approximation for (1/h)	si
u ·n ds, and let Is%u�RE denote the vector whose jth component is

Is %j
u, the higher-order quadrature approximation for (1/h)	sj

u ·n ds. Then, by regrouping the
terms corresponding to the same primal or dual edges, we obtain

F1(Isu)=Fu=0,

and

C1(Is%u)=Cu=0. 


From Theorem 2.1, we have

[Isu, Is%u ]=0. (3.10)

Assume for the moment the following lemma:

Lemma 3.1
If u�U0,

1
2


u
25 [Isu, Is%u ]. (3.11)

Then 
u
2=0 from (3.10), (3.11) and u=0.

Proof

[Isu, Is%u ]=h2 %
E

i=1

(Isi
u)(Is %i

u). (3.12)

The method of proving the estimate (3.12) is to look at the dominant terms. For example for
the interior primal and dual edges s1 and s %1 (see Figure 1) we have

(Is 1
u)(Is %i

u)=
1

242 (22u1+u5+u6)(22u1+u3+u13)

=
1

242 [222u1
2+44u1(u3+u13+u5+u6)+ (u5+u6)(u3+u13)].

Using −1
2(a

2+b2)5ab, we find

(Is 1
u)(Is %1

u)]
1

242 [(222−88)u1
2−22(u3

2+u13
2 +u5

2+u6
2)− (u5

2+u6
2+u3

2+u13
2 )].

Computing the contributions from four surrounding four primal edges s5, s6, s13, s3 and the
corresponding dual edges, it is found that the coefficient of u1

2 in the right-hand-side of (3.12)
is at least

1
242 (222−88−88−4)]

1
2

.
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When s1 is a boundary edge a similar estimate is obtained, so

[Isu, Is%u ]]
1
2

h2 %
E−N1

i=1

ui
2

=
1
2

h2 %
E

i=1

ui
2, for u�U0

=
1
2


u
2. 


Moreover, by direct computation, a similar result to Theorem 2.1 can be proved, i.e.

Lemma 3.2

FCT=0. 
 (3.13)

This identity provides a discrete analog of div(curl u)=0. Equation (3.13) can be used to give
an alternative proof for Theorem 3.1. 


4. ERROR ESTIMATES

In this section, the error in approximating the solution u of the div–curl system (1.1)–(1.3) will
be estimated by the solution u of the covolume approximation (3.8) and (3.9).

To begin, recall the ‘mesh functions’ introduced in [8]. Let u (1) denote the vector in RE

whose kth component uk
(1) is defined by

uk
(1)�

1
h
&

sk

u ·n ds for k=1, . . . , E. (4.1)

Similarly, let u (2) denote the vector in RE% whose kth component uk
(2) is

uk
(2)�

1
h
&

s %k

u ·n ds for k=1, . . . , E %. (4.2)

Finally, let u (3) denote the vector in RE% whose kth component is defined as

uk
(3)�u(Pk) ·nk for k=1, . . . , E %, (4.3)

where Pk is the mid-point on the edge sk and nk is the corresponding unit normal. Since
higher-order schemes are considered, it is assumed that the solution of (1.1)–(1.3) is regular
enough so that u(Pk) in (4.3) is well-defined.

The main estimate is the following:

Theorem 4.1
Let u� (H4(V))2 denote the solution of the div–curl system (1.1)–(1.3), and u the solution of
the covolume scheme (3.8)–(3.9), then


u−u (3)
5Kh4�u�(H 4(V))2. (4.4)

First, let us estimate the operators Is, Is%. 
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Lemma 4.1
For any w�RE, we have


Isw
5
3
w
, (4.5)


Is%w
5
3
w
. (4.6)

Proof


Isw
2= %
E

i=0

h2(Isi
w)2= %

E

i=0

h2� 1
24

(22wi+wi−1+wi+1)
n2

5 %
E

i=0

h2

242 3(222wi
2+wi−1

2 +wi+1
2 )53 %

E

i=0

h2wi
2=3
w
2.

(4.6) is proved similarly. 


Proof of Theorem 4.1
Denote ũ (1) the vector in RE such that

ũ k
(1)=uk

(1),

if sk is an interior primal edge. When sk is a boundary primal edge, the difference between ũ k
(1)

and uk
(1) is the boundary derivative terms in (3.7).

First, (3.8) and (3.9) are rewritten as

Fu=F1(Isu)=r=F1(ũ (1)), (4.7)

Cu=C1(Is%u)=v=C1(u (2)). (4.8)

So

F1(Isu− ũ (1))=0, C1(Is%u−u (2))=0.

From Theorem 2.1, we obtain

[Isu− ũ (1), Is%u−u (2)]=0. (4.9)

So it follows that

[Is(u−u (3)+Isu (3)− ũ (1), Is%(u−u (3))+Is%u (3)−u (2))]=0.

[Is(u−u (3)), Is%(u−u (3))]= − [Is(u−u (3)), Is%u
(3)−u (2)]− [Isu (3)− ũ (1), Is%(u−u (3))]

− [Isu (3)− ũ (1), Is%u (3)−u (2)]

5
Is(u−u (3))

Is%u (3)−u (2)
+
Isu (3)− ũ (1)

Is%(u−u (3))

+
Isu (3)− ũ (1)

Is%u (3)−u (2)


5K1
u−u (3)
(
Is%u (3)−u (2)
+
Isu (3)− ũ (1)
)

+
Isu (3)− ũ (1)

Is%u
(3)−u (2)
.

The last step follows from (4.5) and (4.6).
By the coercivity result (3.11) in Lemma 3.1, we obtain
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1
2


u−u (3)
25K1
u−u (3)
(
Is%u (3)−u (2)
+
Isu (3)− ũ (1)
)+
Isu (3)− ũ (1)

Is%u (3)−u (2)
.

(4.10)

To estimate Is%u (3)−u (2) and Isu (3)− ũ (1), its components are examined. For the dual edge s %2
of the dual cell t %1 (see Figure 1), we have

(Is%u (3)−u (2))2=
1

24
(22u7 ·n7 ·n8 ·u9 ·n9)−

1
h
&

s %2

u ·n ds.

(Is%u (3)−u (2))2 is a linear continuous functional on (H4(V))2 (by a Sobolev embedding theorem)
and, from (3.3), it vanishes for cubic polynomial vectors u. So

�(Is%u (3)−u (2))2�5K(t̃)�u�(H 4(t̃))2, (4.11)

where t̃ is the rectangular region MPON, the union of the square cells that contain the dual
edge s %2. A scale change argument shows that K(t̃) depends on h3 [8], K(t̃)=K1h3, where K1

is independent of h. So


Is%u (3)−u (2)
2= %
E−N1

i=1

(Isu (3)−u (2))i
2h25 %

E−N1

i=1

(K1h3�u�(H 4(t̃i))
2)2h25K1

2h8 %
E−N1

i=1

�u�(H 4(t̃i))
2

2

5K2h
8�u�(H 4(V))2

2 ,

where the last inequality follows from the fact that the t̃i overlap one other only four times.
Thus,


Is%u (3)−u (2)
5K3h4�u�(H 4(V))2. (4.12)

Similarly, from (3.2) and (3.8) it can be shown that


Isu (3)− ũ (1)
5K3h
4�u�(H 4(V))2. (4.13)

Putting (4.12) and (4.13) into (4.10), we obtain


u−u (3)
(2)5K3h4�u�(H 4(V))2
u−u (3)
+K4h8�u�(H 4(V))2
2 ,

so that�
u−u (3)
−
K3

2
h4�u�(H 4(V))2

�2

5
�

K4+
K3

2

2
�

h8�u�(H 4(V))2
2

and


u−u (3)
5�K3

2
+
'

K4+
k3

2

2
�

h4�u�(H 4(V))2,

and the estimate (4.4) is proved. 


A numerical example has been computed. The computational domain is a unit square
[0, 1]× [0, 1]. The domain was divided into equal small squares with dimension h×h. Then a
dual mesh was generated (dual squares) by connecting the circumcenters of any adjacent
primal square cells. The following problem is considered

div u=0,

curl u=v,
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Table I. Error between u and u (3)

0.2 0.1 0.005h

3.29d−2 2.038d−3 1.269d−4
u−u (3)


u �x=0=0,

u �x=1=sin(10) cos(10y),

6 �y=0=0,

6 �y=1= −sin(10) cos(10x),

where u= (u, 6) and v=20 sin(10x) sin(10y).
The exact solution of this problem is

u=
� sin(10x) cos(10y)

−cos(10x) sin(10y)
�

.

Three meshes were used in the computation, h=0.2 for the coarse mesh and h=0.05 for the
fine mesh. The results are shown in Table I. The average rate for this example is about h4.00994,
which is almost the same as the rate given by Theorem 4.1.
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